The Crystal Structures of $\mathrm{Hg}_{4} \mathrm{Sb}_{2} \mathbf{I}_{3}$ and $\mathrm{Cd}_{4} \mathrm{Sb}_{\mathbf{2}} \mathbf{I}_{3}$

A. V. SHEVELKOV, E. V. DIKAREV, and B. A. POPOVKIN*
Department of Chemistry, Moscow State University, Leninskie Gory, 119899, Moscow V-234, U.S.S.R.

Received March 5, 1991

Abstract

The crystal structures of $\mathrm{Hg}_{4} \mathrm{Sb}_{2} \mathrm{I}_{3}$ and $\mathrm{Cd}_{4} \mathrm{Sb}_{2} \mathrm{I}_{3}$ have been solved by X-ray single crystal techniques. $\mathrm{Hg}_{4} \mathrm{Sb}_{2} \mathrm{I}_{3}$ and $\mathrm{Cd}_{4} \mathrm{Sb}_{2} \mathrm{I}_{3}$ are isostructural and crystallize in the cubic system, space group $P a 3, Z=$ 8 , with cell dimensions $a=13.4392(6) \AA$ for $\mathrm{Hg}_{4} \mathrm{Sb}_{2} \mathrm{I}_{3}$ and $a=13.4876(5) \AA$ for $\mathrm{Cd}_{4} \mathrm{Sb}_{2} \mathrm{I}_{3}$. The compounds have a three-dimensional array built from six-membered rings containing mercury (cadmium), antimony, and iodine atoms. One-half of the antimony atoms are bound into Sb_{2}^{4-} pairs with an $\mathrm{Sb}-\mathrm{Sb}$ distance of $2.75 \AA$. The absence of $\mathrm{Hg}-\mathrm{Hg}$ (or $\mathrm{Cd}-\mathrm{Cd}$) and $\mathrm{Sb}-\mathrm{I}$ bonding was determined. © 1991 Academic Press. Inc.

Introduction

We are investigating clusters of bismuth, mercury, and antimony in binary and complex halides (1). The stoichiometry of the compounds $\mathrm{Hg}_{4} \mathrm{Sb}_{2} \mathrm{I}_{3}$ and $\mathrm{Cd}_{4} \mathrm{Sb}_{2} \mathrm{I}_{3}$ reported in $(2,3)$ can not be described in terms of ordinary mercury cations and iodine and antimony anions. The compound with the same stoichiometry $\mathrm{Cd}_{4} \mathrm{P}_{2} \mathrm{I}_{3}$ (4) contains P_{2}^{4-} dumbbells. However, the compounds $\mathrm{Cd}_{4} \mathrm{P}_{2} \mathrm{I}_{3}$ and $\mathrm{Cd}_{4} \mathrm{Sb}_{2} \mathrm{I}_{3}$ are not isostructural since their X-ray diffractograms are quite different. These facts enable us to suggest that $\mathrm{Hg}_{4} \mathrm{Sb}_{2} \mathrm{I}_{3}$ and $\mathrm{Cd}_{4} \mathrm{Sb}_{2} \mathrm{I}_{3}$ should contain clusters of mercury (cadmium) or antimony. We report here on the structure of the $\mathrm{Hg}_{4} \mathrm{Sb}_{2} \mathrm{I}_{3}$ and $\mathrm{Cd}_{4} \mathrm{Sb}_{2} \mathrm{I}_{3}$.

Experimental

$\mathrm{Hg}_{4} \mathrm{Sb}_{2} \mathrm{I}_{3}$ (I) and $\mathrm{Cd}_{4} \mathrm{Sb}_{2} \mathrm{I}_{3}$ (II) were synthesized from the stoichiometric mixtures

[^0]of $\mathrm{Hg}, \mathrm{HgI}_{2}$, and $\mathrm{Sb}(\mathrm{I})$ and $\mathrm{Cd}, \mathrm{CdI}_{2}$, and Sb (II) by annealing them in sealed quartzglass ampoules at 623 K (I) and 703 K (II) for 5 days. Black (I) and dark-red (II) powders were obtained. X-ray powder analysis (Enraf-Nonius FR-552 chamber) did not indicate any traces of source materials. All lines on Guinier spectra were in good agreement with those reported in $(2,3)$

Black (I) and dark-red (II) single crystals of almost spherical form (0.03 mm in diameter) were selected for structure determination and mounted on a Enraf-Nonius CAD4 diffractometer. The unit cell dimensions were determined on the basis of 25 wellcentered reflections in the angular range 17° $<\theta<20^{\circ}$. The systematic absences are uniquely consistent with the space group Pa3 (No. 205). The data were collected at 293 K with data collection parameters listed in Table I. A semiempirical absorption correction was applied based on the ψ-scans of four reflections. The intensities were corrected for Lorentz and polarization effects. In both cases all atoms were located by the

TABLE I
Data Collection and Refinement Parameters

Phase	$\mathrm{Hg}_{4} \mathrm{Sb}_{2} \mathrm{I}_{3}$	$\mathrm{Cd}_{4} \mathrm{Sb}_{2} \mathrm{I}_{3}$
Space group	$\mathrm{Pa} 3(\mathrm{No} 205)$.	
$a(\AA)$	$13.4392(6)$	$13.4876(5)$
$V\left(\AA^{3}\right)$	$2427.3(3)$	$2453.6(3)$
Z	8	8
$\rho_{\text {calc. }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	$7.810(1)$	$5.813(1)$
$\mu\left(\mathrm{cm}^{-1}\right)$	635.13	187.03
$\lambda($ MoK $\alpha)$	$0.71069 \AA$	
Temperature of measurement	293 K	
Scan mode	$\omega-2 \Theta$	$\omega-2 \theta$
Sin $\Theta / \lambda_{\text {max }}$	0.616	0.701
Total No. of reflections	891	1308
No. of reflections used with	428	704
$F_{\mathrm{o}}>6 \sigma\left(F_{\mathrm{o}}\right)$		
No. of refined parameters	28	28
Weights	$w=1$	$w=1$
R	0.065	0.054
R_{w}	0.065	0.054

direct methods. Atomic coordinates and their anisotropic thermal parameters were refined with unit weights to $R=0.065, R_{w}=$ 0.065 (I) and $R=0.054$ (II) and to the atomic parameters listed in Table II. All data analysis was carried out using CSD programs (5).

Description of the Structure and Discussion

The most interesting feature of these compounds is the existence of short $\mathrm{Hg}-\mathrm{Sb}$ ($\mathrm{Cd}-\mathrm{Sb}$) and $\mathrm{Sb}-\mathrm{Sb}$ distances and the absence of short $\mathrm{Sb}-\mathrm{I}$ and $\mathrm{Hg}-\mathrm{Hg}(\mathrm{Cd}-\mathrm{Cd})$ contacts (Tables III and IV).

All atoms in both structures are joined into nonplanar six-membered rings (Fig. 1). Each ring contains three mercury (cadmium), two antimony, and one iodine atom. The two principle types of ring sharing are drawn schematically in Fig. 2. In the first case (Fig. 2a) three rings are stacked via a common Sb 2 atom which is additionally linked along the [111] direction to the Sb 2 atom from the neighboring triplet of rings with the $\mathrm{Sb}-\mathrm{Sb}$ distance of $2.75 \AA$, which is
shorter than the $\mathrm{Sb}-\mathrm{Sb}$ distance in metal (6) $\left(d_{\mathrm{Sb}-\mathrm{Sb}}=2.91 \AA\right.$). In the second case (Fig. 2b) three rings are stacked via a common $\mathrm{Hg} 2-\mathrm{Sb} 1$ (Cd2-Sb1) bond. The two types of ring sharing provide a three-dimensional system of six-membered rings, involving every mercury (cadmium), antimony, and iodine atom. Antimony atoms in $\mathrm{Hg}_{4} \mathrm{Sb}_{2} \mathrm{I}_{3}$ are located in the centers of the almost regular tetrahedra of the two types. The Sbl atoms are surrounded by four mercury atoms and the Sb 2 atoms are surrounded by three mercury atoms and one antimony atom with $\mathrm{Hg}-\mathrm{Sb}$ distances ranging from 2.66 to 2.69 \AA (Table III). The Hg1 atom possesses the planar triangle coordination of two antimony atoms and one iodine atom with the additional iodine atom at a considerably long Hg 1-I distance, $3.44 \AA$. The Hg 2 atoms are located in the centers of distorted tetrahedra built from one antimony atom and three iodine atoms. All atoms in $\mathrm{Cd}_{4} \mathrm{Sb}_{2} \mathrm{I}_{3}$ show the same coordination.

It is interesting that the cell dimensions of the isostructural compounds $\mathrm{Hg}_{4} \mathrm{Sb}_{2} \mathrm{I}_{3}$ and $\mathrm{Cd}_{4} \mathrm{Sb}_{2} \mathrm{I}_{3}$ are nearly the same (Table I). More than that, the $\mathrm{Hg}-\mathrm{I}$ and $\mathrm{Cd}-\mathrm{I}$ distances ranging from 2.96 to $3.03 \AA$ (Tables III and IV)

Fig. 1. The main fragment of the $M_{4} \mathrm{Sb}_{2} \mathrm{I}_{3}(M=\mathrm{Hg}$, Cd) structures. Six-membered rings. For each atom involved in the ring the nearest neighbors are also shown. Black circles, mercury (cadmium); small open circles, antimony; large open circles, iodine.

TABLE II
Final Atomic Coordinates and Thermal Parameters

Atom	x / a	y / b	z / c	$B_{\text {isoleq }}$
1. $\mathrm{Hg}_{4} \mathrm{Sb}_{2} \mathrm{I}_{3}$				
Hg 1	0.0270(2)	$0.0032(2)$	0.2471(2)	2.52(6)
Hg 2	0.7849(2)	$1-x$	$\frac{1}{2}-x$	4.13(7)
Sb1	0.9003(2)	$1-x$	$\frac{1}{2}-x$	0.48(5)
Sb2	$0.5591(3)$	$x-\frac{1}{2}$	$1-x$	$0.78(5)$
11	0.2474(3)	$0.1889(2)$	$0.5669(2)$	0.87(7)
2. $\mathrm{Cd}_{4} \mathrm{Sb}_{2} \mathrm{I}_{3}$				
Cd 1	$0.0261(1)$	0.0144(2)	0.2530(1)	2.85(4)
Cd2	0.7817(1)	$1-x$	$\frac{1}{2}-x$	2.87(3)
Sb1	0.8991 (1)	$1-x$	$\frac{1}{2}-x$	1.22(2)
Sb2	0.5588(1)	$x-\frac{1}{2}$	$1-x$	1.23(2)
[1	0.2437 (1)	0.1868 (1)	0.5680(1)	1.67(3)

are much larger than in corresponding binary iodides (7). It is evident that the analogous compound with zinc instead of mercury or cadmium can not exist since the $\mathrm{Zn}-\mathrm{I}$ distances should be larger in this case than the appropriate $\mathrm{Zn}-\mathrm{I}$ bonding distance.

The fairly short contact $\mathrm{Sb} 2-\mathrm{Sb} 2(2.75 \AA)$ indicates possibly the existence of an Sb_{2}^{4-} complex. The cluster of the same type P_{2}^{4-} with the same coordination of phosphorus has been described in $\mathrm{Cd}_{4} \mathrm{P}_{2} \mathrm{I}_{3}$ (4). In this case it should be proposed that the Sb 2 atom

TABLE III
Interatomic Bond Distances (\AA), Angles $\left({ }^{\circ}\right)$ and Main Nonbonding Distances (\AA) for $\mathrm{Hg}_{4} \mathrm{Sb}_{2} \mathrm{I}_{3}$

Distances		Angles	
Hgl-Sbl	$2.665(4)$	$\mathrm{Sb} 1-\mathrm{Hg} 1-\mathrm{Sb} 2$	144.8(2)
-Sb2	2.672(4)	$\mathrm{Sb} 1-\mathrm{Hg} 1-\mathrm{ll}$	118.66(13)
- II	$3.026(4)$	$\mathrm{Sb} 2-\mathrm{Hg} 1-\mathrm{I} 1$	95.65(13)
$\mathrm{Hg} 2-\mathrm{Sbl}$	$2.686(4)$	$\mathrm{Sb} 1-\mathrm{Hg} 2-\mathrm{II}$	126.47(14) ($3 \times$)
-I1	2.994(4) ($3 \times$)	I1-Hg2-11	88.28(12) ($3 \times$)
$\mathrm{Sbl}-\mathrm{Hg} 1$	$2.665(4)(3 \times$)	$\mathrm{Hg} 1-\mathrm{Sbl}-\mathrm{Hg} 1$	119.57(14) ($3 \times$)
-Hg2	2.686(4)	$\mathrm{Hg} 1-\mathrm{Sbl}-\mathrm{Hg} 2$	93.76(13) (3x)
$\mathrm{Sb} 2-\mathrm{Hg} 1$	$2.672(4)(3 \times$)	$\mathrm{Hg} 1-\mathrm{Sb} 2-\mathrm{Hg} 1$	111.9(2) (3x)
$-\mathrm{Sb} 2$	2.751(5)	$\mathrm{Hg} 1-\mathrm{Sb} 2-\mathrm{Sb} 2$	106.9(2) (3x)
$11-\mathrm{Hg} 2$	2.994(4)	$\mathrm{Hgl}-11-\mathrm{Hg} 2$	112.66 (13)
$-\mathrm{Hgl}$	3.026(4)		
Main nonbonding distances			
Hgl-I1	3.434(5)	$\mathrm{Hg} 2-\mathrm{Hg} 1$	$3.906(4)(3 \times)$
-I1	3.745 (4)	-I1	4.034(4) ($3 \times$)
$-\mathrm{Hg} 2$	3.906(4)	Sbl-I1	4.159(5) (3x)
-I1	$3.913(4)$	Sb2-II	4.229(5) (6x)

TABLE IV
Interatomic Bond Distances (\AA), Angles $\left({ }^{\circ}\right)$, and Main Nonbonding Distances (\AA) for $\mathrm{Cd}_{4} \mathrm{Sb}_{2} \mathrm{I}_{3}$

Distances		Angles	
Cdi-Sb1	2.705(2)	$\mathrm{Sb1}-\mathrm{Cd} 1-\mathrm{Sb} 2$	140.07(9)
-Sb2	2.723(2)	Sb1-Cd1-I1	$119.38(8)$
-I1	2.961(2)	Sb2-Cd1-I1	96.78(7)
Cd2-Sb1	2.744(2)	Sb1-Cd2-I1	125.43(8) (3×)
-I1	2.958(2) (3x)	$11-\mathrm{Cd} 2-\mathrm{I}$	$89.77(6)(3 \times$)
Sbl-Cdl	$2.705(2)(3 \times)$	Cdl-Sbl-Cd1	118.43(8) ($3 \times$)
$-\mathrm{Cd} 2$	2.744(2)	$\mathrm{Cd} 1-\mathrm{Sbl}-\mathrm{Cd} 2$	97.26(7) ($3 \times$)
Sb2-Cd1	2.723(2) ($3 \times$)	Cd1-Sb2--Cd1	109.57(7) ($3 \times$)
$-\mathrm{Sb} 2$	2.747(2)	$\mathrm{Cd} 1-\mathrm{Sb} 2-\mathrm{Sb} 2$	109.38(7) ($3 \times$)
I1-Cd2	2.958(2)	$\mathrm{Cd} 1-\mathrm{I} 1-\mathrm{Cd} 2$	111.98(7)
$-\mathrm{Cd1}$	2.961(2)		

Main nonbonding distances

Cd 1 Il	$3.247(2)$	$\mathrm{Cd} 2-\mathrm{Cd} 1$	$4.089(3)(3 \times)$
-I1	$3.941(2)$	-11	$4.100(2)(3 \times)$
-I1	$3.967(3)$	$\mathrm{Sb} 1-\mathrm{Il}$	$4.217(2)(3 \times)$
- Cd 2	$4.089(3)$	$\mathrm{Sb} 2-\mathrm{Il}$	$4.243(2)(3 \times)$
		-II	$4.253(2)(3 \times)$

(electron configuration $5 s^{2} 5 p^{5}$) gives one electron to form a homonuclear $\mathrm{Sb}-\mathrm{Sb}$ bond, while three lone pairs interact with vacant orbitals of three mercury atoms. Then, four lone pairs of the Sbl atom (electron configuration $5 s^{2} 5 p^{6}$ for oxidation state -3) interact with vacant orbitals of four mercury atoms. Planar triangle and tetrahe-
dral coordinations of mercury atoms are usual for mercury in oxidation state +2 (7 , 8). Assuming the iodine atom to be in oxidation state -1 we can suggest the following crystallochemical formulas: $\left(M^{2+}\right)_{4}\left(\mathrm{Sb}_{2}^{4-}\right)_{1 / 2}$ $\left(\mathrm{Sb}^{3-}\right)_{1}\left(\mathrm{l}^{1-}\right)_{3}$, where $M=\mathrm{Cd}$, Hg .

One can expect indeed that the arrangement of $\mathrm{Sb}-\mathrm{Sb}$ pairs along the [111] direc-

Fig. 2. Two types of ring linkage. Kings are drawn as planar for the sake of simplicity. Black circles, mercury (cadmium); small open circles, antimony; large open circles, iodine.
tion should cause the anisotropy of physical (in particular electrophysical) properties along this direction.

We have also determined the existence of Sb_{2}^{4-} dumbbells in the compound previously reported as $\mathrm{Hg}_{3} \mathrm{Sb}_{2} \mathrm{I}_{4}$ (2). A single crystal structure solution enables us to suppose another stoichiometry. Structure refinement is in progress and will be a topic of a separate article.

References

I. E. V. Dikarev and B. A. Popovkin, "Report on 15th Congress International Union of Crystallography, Bordeaux," p. 292 (1990).
2. H. Puff and H. Gotta, Z. Anorg. Allgem. Chemie 333, 280 (1964).
3. H. Puff and H. Gotta, Z. Anorg. Allgem. Chemie 337, 157 (1965).
4. A. Rebbah, J. Yazbeck, and A. Deschanvres, Acta Crystallogr. Sect. B 36, 1747 (1980).
5. L. G. Akselrud, Yu. N. Gryn, P. Yu. Zavaliy, V. K. Pecharsky, and V.S. Fundamensky, "Report on the 12 th European Crystallographic Meeting, Moscow," p. 155 (1989).
6. C. S. Barret, P. Cucka, and K. Haefner, Acta Crystallogr. 16, 451 (1963).
7. G. A. Geffrey and M. Vlasse, Inorg. Chem. 6, 396 (1967).
8. R. H. FENN, Acta Crystallogr. 20, 20 (1966).

[^0]: * To whom correspondence should be addressed.

